46 research outputs found

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    Rule Languages and Internal Algebras for Rule-Based Optimizers

    No full text
    Rule-based optimizers and optimizer generators use rules to specify query transformations. Rules act directly on query representations, which typically are based on query algebras. But most algebras complicate rule formulation, and rules over these algebras must often resort to calling to externally defined bodies of code. Code makes rules difficult to formulate, prove correct and reason about, and therefore compromises the effectiveness of rule-based systems. In this paper we present KOLA; a combinator-based algebra designed to simplify rule formulation. KOLA is not a user language, and KOLA's variable-free queries are difficult for humans to read. But KOLA is an effective internal algebra because its combinatorstyle makes queries manipulable and structurally revealing. As a result, rules over KOLA queries are easily expressed without the need for supplemental code. We illustrate this point, first by showing some transformations that despite their simplicity, require head and body rou..
    corecore